Development of Cognitive Capabilities for Smart Home Using a Self-Organizing Fuzzy Neural Network
نویسندگان
چکیده
A smart home requires cognitive assistance to analyze and understand the behavior in this sensory rich environment. In this paper we explore the potential of a self-organizing fuzzy neural network (SOFNN) as a core component of a cognitive system for a smart home environment. We develop a cognitive reasoning module that has the ability to adapt its neuronal structure through adding and pruning of neurons according to the incoming data. The SOFNN rules explore the relations of the inputs and the desired reasoning outputs. The network is trained with realistic synthesized data to show its adaptation capability and is tested with unseen data to validate its cognitive capabilities. We outline the theoretical development and describe the results achieved. This initial implementation of the cognitive module demonstrates the potential of the architecture and will serve as a very important test-bed for future work.
منابع مشابه
A Hybrid Adaptive Rule based System for Smart Home Energy Prediction
The increase in energy prices combined with the environmental impact of energy production has made energy efficiency a key component towards the development of smart homes. An efficient energy management strategy for smart homes results in minimized electricity consumption leading to cost savings. Towards this goal, we investigate the impact of environmental factors on home energy consumption. ...
متن کاملDynamically Reconfigurable Online Self-organising Fuzzy Neural Network with Variable Number of Inputs for Smart Home Application
A self-organising fuzzy-neural network (SOFNN) adapts its structure based on variations of the input data. Conventionally in such self-organising networks, the number of inputs providing the data is fixed. In this paper, we consider the situation where the number of inputs to a network changes dynamically during its online operation. We extend our existing work on a SOFNN such that the SOFNN ca...
متن کاملDesigning Decision Maker in a Smart Home for Energy Consumption Optimization Using Fuzzy Modeling
existed electricity grids deliver produced power to the consumer passing through transmission and distribution grids. According to high losses of these grids in transmission level and inexistence of bilateral interaction for simultaneous information exchange, a concept of smart grids were made by capabilities such as consciously participation of consumers in the smart electricity grids, an amou...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملA Self-Organizing Neural Fuzzy Inference Network
A self-organizing neural network is proposed which is inherently a fuzzy inference system with the capability of learning fuzzy rules from data. The learning strategy consists of two phases: a self-organizing clustering to establish the structure of the network as well as the initial values of its parameters and a supervised learning phase for optimal adjustment of these parameters. After learn...
متن کامل